Integral Equation Preconditioning for the Solution of Poisson's Equation on Geometrically Complex Regions

نویسندگان

  • Christopher R. Anderson
  • Archie C. Li
چکیده

This paper is concerned with the implementation and investigation of integral equation based solvers as preconditioners for nite diierence discretizations of Poisson equations in geometrically complex domains. The target discretizations are those associated with \cut-out" grids. We discuss such grids and also describe a software structure which enables their rapid construction. Computational results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUMERICAL SOLUTION OF LINEAR FREDHOLM AND VOLTERRA INTEGRAL EQUATION OF THE SECOND KIND BY USING LEGENDRE WAVELETS

In this paper, we use the continuous Legendre wavelets on the interval [0,1] constructed by Razzaghi M. and Yousefi S. [6] to solve the linear second kind integral equations. We use quadrature formula for the calculation of the products of any functions, which are required in the approximation for the integral equations. Then we reduced the integral equation to the solution of linear algebraic ...

متن کامل

‎Solving Some Initial-Boundary Value Problems Including Non-classical ‎C‎ases of Heat Equation By Spectral and Countour Integral ‎Methods‎

In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...

متن کامل

N‎umerical ‎q‎uasilinearization scheme ‎for the integral equation form of the Blasius equation

‎The ‎method ‎of ‎quasilinearization ‎is ‎an ‎effective ‎tool ‎to ‎solve nonlinear ‎equations ‎when ‎some ‎conditions‎ on ‎the ‎nonlinear term ‎of ‎the ‎problem ‎are ‎satisfi‎‎ed. ‎W‎hen ‎the ‎conditions ‎hold, ‎applying ‎this ‎techniqu‎e ‎gives ‎two ‎sequences of ‎coupled ‎linear ‎equations‎ and ‎the ‎solutions ‎of ‎th‎ese ‎linear ‎equations ‎are quadratically ‎convergent ‎to ‎the ‎solution ‎o...

متن کامل

On the numerical solution of Urysohn integral equation using Legendre approximation

Urysohn integral equation is one of the most applicable topics in both pure and applied mathematics. The main objective of this paper is to solve the Urysohn type Fredholm integral equation. To do this, we approximate the solution of the problem by substituting a suitable truncated series of the well known Legendre polynomials instead of the known function. After discretization of the problem o...

متن کامل

CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS

In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1999